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COMET: Identifying candidate marker panels from single-cell transcriptomic data.

Official documentation for COMET.

Check out the paper on Molecular Systems Biology [https://www.embopress.org/doi/full/10.15252/msb.20199005]!

Start with Quickstart, or jump right into the User Manual.

Use the tool on COMET’s website [http://www.cometsc.com/index].

Find our code on Github [https://github.com/MSingerLab/COMETSC].

If you find COMET to be useful towards your research, please consider
citing our paper on Molecular Systems Biology [https://www.embopress.org/doi/full/10.15252/msb.20199005]!






          

      

      

    

  

    
      
          
            
  
Installation / Quickstart

To skip installation on your own machine and run COMET on your data through COMET’s interface, check out our website [http://www.cometsc.com/comet]!

To install COMET’s Python implementation on your own machine, you
should have Python version 3.6 downloaded & installed. If you do not,
you can get it at the link here [https://www.python.org/downloads/release/python-362/] (scroll down to the bottom of the
page and select your operating system). Otherwise, you will not
be able to set up the proper environment. You can check what python
versions you have installed by using the following command:

$ ls -ls /usr/bin/python*





As with all python usage, it is recommended to use python virtual
environments to avoid conflicting package versions. We provide below
two options for installation: direct installation and installation via
a virtual environment.



Direct Installation

The easiest way to install the package without the use of virtual
environments is to simply run in the terminal:

$ pip install COMETSC





This will auto-download the depencencies necessary for running the
tool. If you prefer to download the source code directly, you can
clone the COMET source from our Github [https://github.com/MSingerLab/COMETSC], navigate to the cloned
directory, then install it using Python.



Installing via a Virtual Environment (Recommended)

The following commands can be used to set up the virtual environment assuming there
are no active environments running on the computer.

The first line will install the virtual environment software to your
computer (assuming you already have pip installed).

$ pip install virtualenv





The second line then sets up a new virtual environment directory of your choice with
the proper version of python

$ virtualenv new_dir --python=python3.6





The following line will activate the virtual environment, just be sure that the
path used is the correct one with respect to the current working directory.

$ source new_dir/bin/activate





Now, install the proper COMET version to the virtual environment.

$ pip install COMETSC





When you are finished using the virtual environment,
simply type ‘deactivate’ and you will return to your usual python.

$ deactivate





Your virtual environment should now be set up. If you run into any
errors with the above steps, please consult the python documentation
at their tutorial [https://virtualenv.pypa.io/en/latest/] or reach out to us at oshahid@ds.dfci.harvard.edu.



Usage

Now, run COMET on your data. Give the files of your data as the first
three arguments and your desired output directory as your fourth
argument. Your data must be formatted into three files in your current
directory.
See the Manual for more information.

In this example, we have our data located in the current
directory. output/ is the directory where COMET’s output will be
stored. To test your installation, you can download the following
example inputs here ! Copy them
to the directory of your choice and run the following command within
the directory:

$ Comet tabmarker.txt tabvis.txt tabcluster.txt output/





After this command is entered, COMET will run in the terminal,
processing your data. If you are following along on your terminal and
the run finishes, the install was a success!
See some examples for details on
what the outputs should look like.

If, for example, you would like to skip the visualization step, simply
add the “-skipvis” option as shown below:

$ Comet tabmarker.txt tabvis.txt tabcluster.txt output/ -skipvis True





All optional arguments for the tool are described below in detail.


Note

Why does my output contain genes that are not relevant
(e.g. are secreted rather than cell-surface)??
Our current marker list is inclusive rather than exclusive. If
you find irrelevant non surface markers (e.g. secreted), you
can manualy delete them from the list you used and upload the new list.



The optional statements are available as follows:

-h ()


Help.




-g (.txt)


Optional gene list. Pointing -g to a text file with a list of
genes will only run COMET with these genes. By default, it will
run on all genes. Gene lists should be either comma delimited or line delimited.




-C (int)


Multi-process option. This allows the user to choose how many
clusters to run in parallel. This option is entirely dependent on
your hardware, a good benchmark is the number of cores on your
computer is a good choice for this option if you want things to
run faster. Defaults to 1.




-X (int)


X-param of the XL-mHG test. Determines the percentage of ones
above the threshold. See the statistical section for more
info. Should only be values between 0 and 1. Defaults to .15 (15%)




-L (int)


L-param of the XL-mHG test. Determines the lowest threshold to
consider.
See the statistical section for more info. Defaults to 2 * size of cluster




-Abbrev (list)


Abbrev is a variable to turn on the heuristics for a given
run. After typing ‘-Abbrev’ , give a list of the number gene
combinations you would like to be treated with the heuristic. For
example, if you want to turn on the heuristic for 3- gene
combinations only, input [3]. If you would like them for both 2-
and 3- gene combinations, input [2,3]. Defaults to an empty list.




-K (int)


The number of gene combinations you would like to consider. This
defaults to 2, can be at most 4 (for the time being). For example,
if 4 is chosen, COMET will run 2, 3, and 4 gene combinations.




-Down (int)


For turning on downsampling. Will turn the data set into a random
sampling of this many cells. Preserves cluster percentages by
taking cells of each cluster at the same rate as the full
set. Defaults to no downsampling.




-Trim (int)


Integer input for determining the size of the output
files. Currently default is set to 2000 lines, but an increase here will
give more combinations / singletons in the final ranked output files.




-Count (Boolean)


Will graph the log(expression+1). Leads to
nicer continuous expression plots when count data is used.
Defaults to False, will plot the inputted expression as is.




-tenx (Boolean)


For turning on tenx file integration. To submit a 10X format
expression matrix, set this variable to True and in place of the
expression matrix file in the command, use the folder containing
the 10X data. Keep the default 10X names (e.g. barcodes.tsv,
genes.tsv,matrix.mtx)




-online (Boolean)


Online version of COMET, turning this on will produce a run as if
it were submitted to the interface. This limits the run to looking
at the 15 largest clusters.




-skipvis (Boolean)


Setting this to true will skip the visualization section of the
tool. Useful for speeding things up or if a user does not have
coordinates to use. Please Note: The tool stilll expects an
input for the visualization file, so just use anything that will
fill that spot. Can be an empty text file or even one of the files
already in use (e.g. cluster file), it will not be used.






Troubleshooting

There has been a known issue with the compatibility of matplotlib with
certain installations.
The errors may look as follows:

RuntimeError: Python is not installed as a framework. The Mac OS X
backend will not be able to function correctly if Python is not
installed as a framework.

ModuleNotFoundError: No module named ‘tkinter’

This issue occurs when the python environment is using the wrong
version of the matplotlib backend variable, a setting used for a
variety of different plotting schemes.

To fix this issue, change the matplotlibrc ‘backend’ variable to ‘Agg’
as follows:

cd ~/.matplotlib

Create an empty file called ‘matplotlibrc’ (e.g. vim matplorlibrc)

Add ‘backend: Agg’ to this file and save (esc+:+w+q)

The matplotlib install should be fixed and Comet should run normally. This issue is discussed on
stackoverflow [https://stackoverflow.com/questions/21784641/installation-issue-with-matplotlib-python] as well. If you already have a matplotlibrc file in the
site packages from downloading matplotlib, maneuvering to that file and changing
the backend as described above may also fix the problem.

The most common error when running COMET is the formatting of the
input files. If a run is failing and you cannot figure out why, please
consult the Manual to make sure the inputs are
absolutely correct.

Any further issues, please feel free to reach out to
oshahid@ds.dfci.harvard.edu with any questions, concerns, or
troubleshooting problems.







          

      

      

    

  

    
      
          
            
  
User Manual

Welcome to COMET’s User Manual! Included are COMET’s technical details, statistical background, and instructions for manual usage.

If you just want to run COMET on your data on COMET’s servers, check out our website [http://www.cometsc.com/index]!



	Background

	Details of operation

	Input formatting

	Output








          

      

      

    

  

    
      
          
            
  
Background

COMET’s goal is to make it easier to isolate a specified cluster of cells from a larger population. We attempt to find the best set of ‘marker’ surface proteins that occur in the specified cluster, but not in the rest of the population. Given this information, researchers can isolate the specified cluster using antibodies which bind to these ‘marker’ proteins.

We attempt to accomplish this by applying the hypergeometric statistical test to a dataset generated by single-cell RNA sequencing of a representative cell population. This dataset maps each single cell to a numerical expression value for each gene measured by this sequencing. By normalizing these values, we can compare expression of a set of genes across the population, finding genes which are expressed by our specified cluster but not in the rest of the population.


The hypergeometric test

Traditional methods of extracting ‘marker’ proteins from a single-cell RNA sequencing dataset use the statistical t-test, finding single genes where the median expression in the specified cluster differ most from the median of the rest of the population. This method has limitations in utility and statistical rigor: most significantly, it cannot find sets of ‘marker’ proteins; only single proteins.

COMET uses the hypergeometric statistical test to overcome these limitations. The hypergeometric test considers discrete expression/non-expression instead of a continuous expression scale, allowing us to test gene sets by considering expression/non-expression of the entire set. Combining genes using a continuous expression scale and t-tests is possible: for example, by simply using the n ‘best’ marker genes. This, however, is ineffective: combinations of genes do not necessarily mark the same cells as their components.

Additionally, COMET uses Florian Wagner’s implementation [https://github.com/flo-compbio/xlmhg] of the ‘mHG’ statistical test, which in this context finds the most statistically significant cutoff between expression/non-expression, given our continuous gene expression values.








          

      

      

    

  

    
      
          
            
  
Details of operation

COMET iterates sequentially through all user-specified clusters, generating statistics/visuals for one at a time.


Per-cluster program flow


	1. Read in data from TXT.


	2. Run XL-mHG tests on singletons.


	3. ‘Slide’ XL-mHG cutoff values.


	4. Generate discrete expression matrix using cutoffs.


	5. Find cluster and population pair expression counts.


	Finding the parameters for gene pairs


	3+ gene combinations






	6. Run hypergeometric test on pairs using counts.


	7. Calculate true positive/negative.


	8. Export statistical results.


	9. Generate and export visualizations.






[image: flow]

A simplified version of the program flow.

First, continuous expression values are converted to discrete via the XL-mHG test. Then, genes are combined and their combinations tests via the hypergeometric test. Finally, these combinations are ranked, assessed, and plotted.


1. Read in data from TXT.

User-specified data is read in via TXT format (currently, requiring tab delimiters.) See Usage for details of the format of this data.

There are three components:


	Per-cell gene expression values. Each gene must be normalized over cells.


	Cluster membership by cell.


	Per-cell 2-D visualization coordinates, for plotting.




In order to test ‘complement’ genes (i.e. expressed as the absence of a gene rather than the presence of a gene), COMET creates a new complement gene for each gene. These complement genes are treated exactly the same as normal genes, but their expression values are the negative of the expression values of their analogous gene. This allows COMET to find separate mHG cutoff values for genes and their complements.



2. Run XL-mHG tests on singletons.

COMET receives as input a gene expression matrix including n cells (sample size) and p genes, as well as a cluster label for each cell. The tool will then proceed to testing, for each cluster C and gene G, whether gene G is a favorable marker candidate for cluster C. A measure of significance will be computed for gene G’s potential as a marker, as well as other informative statistics (such as True Positive and True Negative rates).

COMET will start by pooling all cells that are not in cluster C into a bigger cluster C0. The procedure then relies on the XL-minimal Hypergeometric test (XL-mHG test) to assess whether a gene is a favorable marker for cluster C with respect to cluster C0.  In the following paragraphs, we briefly describe the minima Hypergeometric test (mHG test) and the XL-Hypergeometric test. We refer the reader to Wagner(2017) fo more details on these statistical tests.

The mHG test is a rank-based nonparametric test used to determine gene set enrichment. Cell labels (“1” if the cell belongs to cluster C, and “0” if the cells belongs to cluster C0) are sorted based on absolute gene expression values, resulting in a binary list of cluster labels v. For each given cutoff index i, a Hypergeometric test (HG test) is performed in order to determine enrichment in cluster C cells above the cutoff i. The corresponding HG p-value is computed. The mHG test will then record which cutoff achieved the lowest HG p-value, i.e. the cutoff that achieved the best C cells enrichment in the upper part of the list v. This lowest p-value is the mHG test statistic. A p-value for the mHG test is then computed efficiently using a Dynamic Programming approach.

The XL-mHG test incorporates a slight variation to the mHG test, by including two additional parameters, X and L. L is an upper bound on the cutoff index i (where i=0 represents the top of the list), while X is a percentage value indicating the minimal number of cluster C cells the user wants to capture above the chosen cutoff. Once an optimal cutoff index i* for gene G has been found using the mHG test, the original gene expression vector can be binarized. We consider that G is expressed (value of 1) in all cells above the cutoff i*, and that G is not expressed (value of 0) in all cells below the cutoff. In a sense, X and L can be viewed as parameters controlling the False Positive and False Negative rates. X is precisely a lower bound on the True Positive rate, while L may be tuned to minimize the number of False positives.

Common marker detection practice in single-cell transcriptomics is to compare the cell populations in cluster C and cluster C0 using statistical tests such as the unequal variance t-test (Welch test), the Wilcoxon rank-sum test, the Kolmogorov-Smirnov test, as well as more sophisticated models (zero-inflated Negative Binomial models, hurdle models). COMET will also output the t-test statistic and p-values, but will not use these values for purposes other than informing the user.



3. ‘Slide’ XL-mHG cutoff values.

It may happen that the cutoff index lands at a position in the list where all cells have the same gene expression value. Since we cannot distinguish between cells having the same gene expression value, COMET needs to convert this cutoff index into an absolute  cutoff value t in terms of gene expression (usually expressed in CPM, TPM, or log-transformed TPM). It accomplishes this by ‘sliding up’ the cutoff index in the sorted list of cells until the index encounters a cell with a different gene expression value.

For example, gene expression data often contains many cells that do not express the gene of interest at all. These cells have a gene expression value of 0. In the case that the XL-mHG cutoff index lands on a cell with 0 expression, COMET will ‘slide’ up the cutoff index in the sorted list of cells until it finds a cell with non-zero expression. In other words, COMET will choose a cutoff value between 0 and the lowest non-zero expression value, sliding ‘upwards’ towards higher values. This results in a non-expression (binarized gene expression value of 0) and expression group (binarized gene expression value of 0), where non-expression is exclusively 0-expression.

COMET will always slide ‘upwards’. In the above case of 0-expression, sliding ‘downwards’ and choosing a cutoff below 0 would create an non-expression group of 0 members; no cell expresses below 0! The exception is if COMET reaches the ‘top’ of the list: if it chooses a cutoff value above any cell, the expression group will have zero members. In this case, COMET will turn around and slide ‘downwards’ until it finds a suitable cutoff value. ‘Complement’ genes are treated in the same way, even though their expression values are negative.



4. Generate discrete expression matrix using cutoffs.

Now that COMET has generated absolute cutoff values for each gene, it converts the gene expression matrix (rows are genes, columns are cells) of continuous gene expression to one of discrete gene expression: where expression for each individual gene G is represented as a ‘1’ for cells that have expression levels above the XL-mHG absolute cutoff value for G, and as a ‘0’ for cells whose G’s expression level is below the XL-mHG absolute cutoff. Binarizing gene expression data is useful to compute statistics such as True Positive and True Negative rates for each gene and each cluster. It also facilitates handling gene combinations.



5. Find cluster and population pair expression counts.

Once binarized gene expression values have been obtained for each single gene relative to each cluster of interest, one can leverage these results to obtain similar binarized expression values for combinations of genes. For clarity purposes, we specialize this paragraph for combinations of two genes, but this extends beyond this simple case to combinations of any number of genes, or/and their complements. If v1 (resp. v2) represents the binarized gene expression vector for gene A (resp. B), the binarized gene expression vector for the combination (A AND B) will be the vector v1*v2. where * denotes the element-wise product.

Gene combinations are then ranked using the p-values of a Hypergeometric test looking at the number of cells in cluster C that have a binarized (A AND B) expression value of 1. The parameters of the hypergeometric test are as follows:
- Number of cells in cluster C expressing the combination (A AND B);
- Number of cells in cluster C;
- Number of cells expressing the combination (A AND B);
- Total number of cells.
These parameters are usually referred to as k, s, M, and N, respectively.

As a note, by default COMET will not consider any single genes with a True-Positive value of less then 15% in any multiple gene marker panels since the True-Positive rate can only decrease with the addition of genes to a marker panel. This also decreases the size of matrix multiplications.


Finding the parameters for gene pairs

For gene pairs, True Positive and True Negative rates can be computed efficiently using matrix multiplication. To understand this better, let’s take the case of a combination of two genes (A AND B). Let u1 be the vector whose i-th entry is 1 if cell i is a True Positive for gene A (i.e. if cell i belongs to cluster C and expresses gene A), and 0 otherwise. Define u2 similarly for gene B. Then the inner product of u1 with u2 will provide to the number of True Positives for (A AND B), i.e. the number of cells expressing (A AND B) that belong to cluster C. Dividing this inner product by the number of cells in cluster C will yield the True Positive rate. Organizing the True Positive vectors into a gene x cell matrix M, it follows that computing the True Positive rate for gene pairs boils down to matrix multiplication of M with its transpose. The result of this operation is a gene x gene matrix TP, where the (i,j)-th entry TP(i,j) is precisely the True Positive rate corresponding to the combination of gene Gi and gene Gj. This similarly applies to computing True Negative rates.

In this way, COMET finds the k and M parameters for the hypergeometric test mentioned above, which is used to rank gene combinations in the final output. The s and N parameters are easily found by counting cluster members.



3+ gene combinations

Combinations of 3-4 genes are currently implemented and turned on using the -K option. For each given combination of  genes (A AND B AND C), COMET will compute a True Positive rate, True Negative rate as well as a Hypergeometric significance measure, as mentioned above. These computations leverage matrix multiplication. Due to the current computational expense, it can be run in full (if a cluster is available) or on lesser hardware with an abbreviated search space by turning on the heuristics. The main bottleneck is matrix multiplication on computers with smaller memory loads.

For the 3-gene combinations , we construct an ~N^2 x Cells matrix containing 2-gene combinations (A AND B), then multiply by another N x Cells matrix containing gene C. This gives us an expression count matrix for the 3 gene combinations (large) and is then trimmed down to discard gene combinations such as AAA and AAB where there are gene repeats.




6. Run hypergeometric test on pairs using counts.

Ranking single genes and gene combinations according to their potential as markers for a given clusters requires defining a unified metric to compare the performance of these different marker candidates. Because each gene combination (where a singleton is considered to be a combination of a single gene) has its own binarized expression vector (where the combinations is said to be expressed for values of 1, and not expressed for values of 0), we can use this expression vector to perform a Hypergeometric test looking at the number of cells in cluster C that have a binarized expression value of 1. This test will produce a p-value, which is then used to rank all different combinations. Intuitively, a lower p-value suggests that the corresponding gene combination is a better candidate marker panel.



7. Calculate true positive/negative.

Once COMET has ranked all gene combinations using the corresponding hypergeometric p-value, it reports True Positive and True Negative rates associated with each gene combination, using the matrix products found earlier. As a reminder, True Positive rate is found by dividing the number of expressing cells in the cluster by the total cell count of the cluster; true negative is found by dividing the number of non-expressing cells outside the cluster by the total cell count outside the cluster.



8. Export statistical results.

COMET’s statistical results are exported to multiple CSV files per cluster: some including statistical values for exclusively singletons, and some including combinations. Rows are genes or gene combinations, columns are values associated with that gene/combination.

The columns of the statistical data are:


	gene: the name of the gene.


	HG_stat: the hypergeometric test statistic. Genes are ranked using this value.


	mHG_pval: the statistical significance of the cutoff which the XL-mHG test has chosen.


	mHG_cutoff_index: the index which the XL-mHG has chosen, after sliding.


	mHG_cutoff_value: the gene expression cutoff value corresponding to the chosen index.


	t_stat: the t-test statistic.


	t_pval: the t-test p significance value corresponding to the test statistic.


	TP: the true positive rate.


	TN: the true negative rate.


	FoldChange: the log base 2 fold change of a single gene from the cluster of interest compared to the rest of the cells.


	init rank: sequential ranking based on HG_stat, where lower HG_stat is better ranking. No two genes are ranked the same; those with identical hypergeometric statistic values are ranked arbitrarily relative to one another.


	CCS: Cluster Clear Score. This gives us a statistic for the clearing out of other clusters with the addition of the second gene in comparison with the single gene case. The ‘lead gene’ is whichever of the pair has the smallest p-value, then we compute weighted True Negative deltas across the other clusters for the lead gene and the pair. This is only computed for a certain number of the top performing ‘init rank’ gene combinations.


	rank: Final rank. Takes the average of the the init rank and the CCS to determine which gene combinations are the best performing in both tests.


	Plot: Determines whether a gene is plotted (1) or not (0). The purpose is to only graph the top ten of a given gene appearance to avoid very well performing genes from taking over the entire results page.


	gene is replaced by gene_1 and gene_2 (combinations of 3+ genes are unimplemented as of yet).


	mHG_pval, mHG_cutoff_index, mHG_cutoff_value, t_stat, and t_pval are omitted, since they are irrelevant to non-singletons.






9. Generate and export visualizations.

For each cluster, COMET generates several PNG file folders containing visualizations of the statistical results. Each folder’s name is prefixed by the cluster name, and includes visuals for only the first few highest ranked genes/combinations. The data files are described in the Output section.

The folders are:


	(cluster)_pairs_as_singletons: compares discrete expression and continuous expression for each gene in a combination on a t-SNE plot.


	(cluster)_discrete_pairs: compares discrete expression of a gene combination with that of its components.


	(cluster)_pair_TP_TN: plots true positive/negative rates of each gene.


	(cluster)_singleton: same as the combined plot, but includes only singletons.


	(cluster)_singleton_TP_TN: same as the TP_TN plot, but includes only singletons.


	(cluster)_discrete_trios: compares discrete expression of a gene combination with that of its components, but there are three.











          

      

      

    

  

    
      
          
            
  
Input formatting

Before you use COMET with gene expression data, your data should be
formatted into 3 files as shown below. The tables below are shown in excel format
for ease of view, but files should be given as plain text files.


	markers.txt: The expression matrix table stored as a TXT file (.txt). The columns
of the table lists cell names, while the rows
lists genes. Each element in the rest of the table should contain a
numerical gene expression value, corresponding to the row/cell and
column/gene of the element. Tab delimited only. COMET does not do any preprocessing on
this file.




Using the ‘-tenx’ option in the terminal allows the input
of 10X data directly from the cellranger output. You must specify
the folder where the expression matrix is found instead of a single
file. The names of the files MUST be: genes.tsv , barcodes.tsv, matrix.mtx


[image: markers]





	vis.txt: The visualization coordinates stored as a TXT file (.txt). Consists of three columns separated by tabs,
the first column is cell name (the same as those in
markers.txt), the second is the x-axis value for the cell, and
the third is the y-axis value for the cell. Tab delimited only.




Any 2-d visualization is fine (e.g. t-SNE, UMAP)


[image: tsne]





	cluster.txt: The cluster assignments for cells stored as a TXT file (.txt).
The first column is cell name (consistent with
markers.txt and tsne.txt) and the second is the cluster of
which the cell is a member. Tab delimited only.

[image: cluster]



	gene_list: A list of genes to use for filtering in your
data. An optional addition, but when used COMET will only consider the genes submitted here.
By default COMET’s online interface will use our own list of surface
marking genes whereas the package will use all genes. Can be comma delimited on a single line or one gene per line, no commas.










          

      

      

    

  

    
      
          
            
  
Output

Following are examples of COMET output. Descriptions of statistical
values can be found in the details section of the
manual.

Comet outputs two folders, one with ranked marker panel lists and
one with helpful visualizations for the top ranked marker panels. The
data folder contains all of the ranked marker panel lists (see below)
ordered by the cluster of interest which is stated in the file
name. The vis folder contains folders for each cluster (see below) as
well as the TP/TN plos for each cluster (see below). Each sub-folder
in vis contains png files of different helpful visualizations of the
data. The metadata file and pickles folder are for future developments
and are currently not utilized.

For each cluster the following output files will be generated:

Candidate marker panel output files:


	singleton_all_ranked :
Single gene marker list containing the overall rankings based on the
xl-mHG p-value and the absolute fold change. Includes genes with True
Positive value greater than 0.15 and negation genes
if they have a True Negative value of greater than 0.5  .


	singleton_positive_markers_ranked:
Single gene marker list as above, except without the negation
genes. Useful if the focus is on positive markers.


	singleton_full_unranked :
ALL single genes, with no rank. Useful for finding genes that did not
pass the thresholds in singleton_all_ranked


	pair_final_ranking :
Gives the gene-pairs ordered based on our ranking system of
statistical relevance. Does not include all pairs.


	pair_full_unranked :
Gives ALL gene-pairs with no ordering and no rankings. Useful for
looking at pairs that did not show up in the ranked list.


	_trips :
Three gene marker panels ranked (if enabled).


	_quads :
Four gene marker panels ranked (if enabled).




CSV  pair output example :
[image: pair_csv]

Singleton-only CSV output example :
[image: sing_csv]

Visualization Directories:

Shown below is t-sne format, but any two-dimensional visualization method is fine to use as input to COMET.


	pairs_as_singletons:
Gives the discrete and continuous plot for the single genes of the top
performing pairs.




[image: combined]


	discrete_pairs :
Discrete only plots that show a pair of genes each. Gives a
visualization of the discrete dual-expression alongside each single gene’s
discrete expression.




[image: discrete]


	singleton :
Plots that show the discrete and continuous version  of the top
performing single genes.




[image: sing_cmb]


	Pair_TP_TN :
True positive/ True negative values for the top gene pairs.




[image: TPTN]


	Singleton_TP_TN :
true positive / True negatives values for the top single genes.




[image: sing_TPTN]

Results shown here are using the Mouse Cell Atlas database (Han
et. al. 2018)







          

      

      

    

  

    
      
          
            
  
API reference

At the moment, these functions are designed for internal use only.



	hgmd.__main__




	hgmd.hgmd




	hgmd.visualize
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hgmd.hgmd







          

      

      

    

  

    
      
          
            
  
hgmd.visualize
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3.lsolation by flow cytometry-based assay

Utilizing the XL-mHG test for candidate marker

detection

The XL-mHG test identifies, for each
cluster, the optimal way in which a gene
can isolate that cluster. For each gene
and each cluster, an expression threshold

is determined.
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Combinatorics of potential gene markers

Computations reduce to Matrix Multiplication
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COmbinatorial Marker detection from single-cEll Transcriptomic data

Upload Files

Cluster File
Contains mapping between cell and cluster number

Choose File  No file chosen

Expression Matrix File
Full cell by gene count matrix
Choose File ' No file chosen

TSNE File
TSNE plot information

The COMET Web Interface =~ ... ] o e honan

Project Name
Your email will be sent with this information in the subject.

(Optional) Gene list
Choosing your own list of genes will cut down your expression matrix to only include those genes.
Otherwise, COMET will default to using our own curated list of genes that show surface expression

Choose File = No file chosen

GO
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Discussion / Future Work

Future work includes running COMET on tissues from the single-cell
mouse atlas

We plan on having an operational web interface and downloadable
package for this tool within the next month.

We are actively looking for Beta users to test the tool and give valuable
suggestions to improve the user experience! Let us know if you are
interested.
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